
Best Practices for Using
the Strangler Pattern to
Break Up the Monolith

Best Practices for Using the Strangler Pattern to Break Up the Monolith

Jeroen van Dun

Product
Manager

Herman Rensink

Distinguished
Engineer

2

Rocket Software Rocket Software

Not designed for today’s business

Source: Deloitte

3

Challenging to maintain

Difficult to connect to other systems

User experience limitations

Philosophies of Modernization

In place Hybrid Migrate

4

The Case for Modernization

Decades of business logic invested

Long lead times

Business disruption

High costs/overruns

Performant platforms

IBM i is mission-critical and migration is risky!

5

The Case for Modernization

• Modernizing IBM i applications enables businesses to better serve customers,
capture new clients, and enter or even create new markets.

• Modernization is the preferred path
‒ Over 70% of IBM i customers choose

modernization over migration (IDC)

• Development agility is crucial
‒ 69% of IT leaders say modernization is “very or

extremely important” for business objectives over
the next 12 months (Rocket Software, IT Jungle)

Businesses must evolve to stay competitive

6

- ITJungle

Modernizing IBM i applications
enables businesses to better
serve customers, capture new
clients, and enter or even
create new markets.

Role of APIs & User Experience in Modernization

• API integration is transforming
operations

‒ APIs streamline how organizations
expose and consume business logic
and data across platforms

• User experience matters
‒ Modern, user-friendly interfaces drive

agility, speed deployment of new
features, and improve staff retention

Source: Deloitte

7

Philosophies of Modernization

In place Hybrid Migrate

8

The Strangler Pattern

9

Strangler Fig

Strangler fig is the common name
for a number of tropical and
subtropical plant species in the
genus Ficus.

They seed in the upper branches
of a tree and gradually work their
way down the tree until they root
in the soil.

Over many years they grow into
fantastic and beautiful shapes,
meanwhile strangling and killing
the tree that was their host.

10

Strangler Pattern

11

• Examine the business capabilities that the current
application provides.

• Create small strangler services that encapsulate the
logic of each capability.

• Migrate business capabilities into new services.

Identify the business capabilities

12

Group logic in independent bubbles…

13

Interbank
Payments

Account
Setup

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit Card
Application

Prioritize the bubbles

14

Interbank
Payments

Account
Setup

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit Card
Application

Create small strangler services for the bubbles

15

Interbank
Payments

Account
Setup

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit Card
Application

API

API

A
PI

Chip away at the capabilities of the old application

16

Interbank
Payments

Account
Setup

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit Card
Application

API

API

A
PI

Fraud
Detection

A
PI

17

Effort (cost/time)

Ti
m

e
to

 V
al

ue

Iterative App
Modernization

Do small increments, avoid
major rewrites.

Deliver incremental business
value.

Breaking a huge application
into smaller chunks requires
careful preparation and a
solid testing strategy.

today

future

= legacy functions

= modern functions

Iterative application
modernization
A detailed approach

18

Setting the foundation for success

19

Which
components

do you need to
succeed

API creation

DeploymentDevOps

API management

Collecting application insights

20

Interbank
Payments

Account
Setup

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit
Cards

Loan
Reporting

• How is the monolith being used?

• What business functions?

• Identify usage patterns

• Capture all user types

• Augment with source analysis

21

Applying the
Strangler Pattern

• Analyze Application Insights

• Prioritize functions

• Turn function into a REST API

• Create a test suite for it

Interbank
Payments

Account
Setup

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit
Cards

Loan
Reporting

22

Applying the
Strangler Pattern (2)

• Recreate the same function

• same spec

• Insert router

• Switch over
Interbank
Payments

Account
Setup

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit
Cards

Loan
Reporting

Account
Setup

Router

= any language or platform

23

Applying the
Strangler Pattern (2)

• Recreate the same function

• Same spec

• Insert router

• Switch over

• Decommission legacy code

Interbank
Payments

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit
Cards

Loan
Reporting

Router

Account
Setup

24

Applying the
Strangler Pattern (2)

• Recreate the same function

• Same spec

• Insert router

• Switch over

• Decommission legacy code

• Repeat

Interbank
Payments

Cash
Deposit

Loan
Approvals

Account
Settlement

Collateral
Valuation

Interest Rate
Review

Credit Card
Application

Loan
Reporting

Router

Account
Setup

Interbank
Payments

Loan
Approvals

Interest
Rate

Review

25

Applying the
Strangler Pattern (3)

• Discard unused functions

• Decommission legacy
component

• Move on to the next

Router

Account
Setup

Interbank
Payments

Loan
Approvals

Interest
Rate

Review

Cash
Deposit

Account
Settlement

Loan
Reporting

Credit
Cards

Collateral
Valuation

Ficus aurea

Testing stages

26

Unit Testing

Does the thing
I created do what I

expected it
to do?

System Testing

Does the thing I
created do what it

was designed to do?

Acceptance Testing

Does my end user like
the thing I created?

How is the
performance?

Test new code
with unit testing

Integration Testing

Does the thing I
created work with
the things others

created?

End to end
testing of the mix

of old and new

Run old and new
side by side

Make sure old
and new work
well together

The 10x rule and Shift Left Testing

Bugs get ~10x more expensive
to fix at each later stage of the
software development lifecycle

Barry Boehm, 1981

Shift Left Testing tests
earlier in the SDLC

Larry Smith, 2001

Test Considerations

• Shift left testing

• Automate, automate, automate

• Good test data

• Generate test scripts from OpenAPI

• Measure and monitor API performance

Agile testing Pyramid (Mike Cohn)

29

UI

System

API

Integration

Unit

A
u
to

m
a
te

d

Theory

UI

Exploratory

Reality

Exploratory

Ask the audience

30

UI

Syste
m

API

Integration

Unit

UI

or

What’s does your
pyramid look like?

Mike Cohn’s

Cocktail glass

• Test data should be:
• up to date
• specific to the use case
• anonymized

31

Test Data - Clean test data is essential

• Ensure you meet your
compliance obligations

• Revert after testing

Ask the audience

32

How do you get
 your test data?

We don’t

We generate with AI

We extract from

 production

33

Effort (cost/time)

Ti
m

e
to

 V
al

ue

Deploying the
Application

Heterogeneous architecture

Where will the polylith run?

Microservice deployment
should be carefully
orchestrated and automated

future

= legacy functions

= modern functions

70% of errors in
production are
deployment
problems – only
30% are due to
faulty code (IDC)

Deployment is
complex in an
IBM i+ environment

Comprehensive
control and
visibility of
deployments
is essential

Testcases must
cover not just
software but also
deployment

Code deployment must be reliable

34

01 02 03 04

Automation is key

Iterative App Modernization requires DevOps

35

Design Code Test Deploy

Waterfall

CodeDesign Test DeployCode Code CodeTest Test Test

Agile

DevOps

Design

IBM i+ DevOps

36

Continuous
Integration (CI)

Continuous
Deployment (CD)

Benefits of clear CI/CD strategy

• Faster time to market and feedback from users
through automation of the test process

• Improve code quality and reliability
through more thorough testing during development
by making testing cheaper and easier

• Empowering teams with valuable test result data and reporting
so they can make informed business decisions

37

API Management Features

38

API Policy Manager

API Analytics

API Gateway

API portal

Deployment Flexibility

Takeaways

• Strangler Pattern is a good strategy to break up the monolith
Modernize incrementally and avoid the pitfalls of major rewrites

• Test thoroughly and often
Shift left testing, required for CI/CD, will increase software quality & reduce costs

• Implement comprehensive automation technologies
Automation is the key and will reduce time-to-production, errors, & skills reliance

• Ensure you achieve transparency throughout all development activities
Visibility has never been more important with ever increasing complexity

• A good DevOps strategy will help you achieve this
It’s no longer optional

39

Swing by Rocketsoftware.com to see how we
can help you disrupt, without disruption

Booth Number #515

Q&A

Thank you
rocketsoftware.com
info@rocketsoftware.com

Visit us in

Booth
#515

	Default Section
	Slide 1: Best Practices for Using the Strangler Pattern to Break Up the Monolith
	Slide 2
	Slide 3: Not designed for today’s business
	Slide 4: Philosophies of Modernization
	Slide 5: The Case for Modernization
	Slide 6: The Case for Modernization
	Slide 7: Role of APIs & User Experience in Modernization
	Slide 8: Philosophies of Modernization
	Slide 9: The Strangler Pattern
	Slide 10: Strangler Fig
	Slide 11: Strangler Pattern
	Slide 12: Identify the business capabilities
	Slide 13: Group logic in independent bubbles…
	Slide 14: Prioritize the bubbles
	Slide 15: Create small strangler services for the bubbles
	Slide 16: Chip away at the capabilities of the old application
	Slide 17
	Slide 18: Iterative application modernization

	API Creation
	Slide 19: Setting the foundation for success
	Slide 20: Collecting application insights
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Testing stages
	Slide 27: The 10x rule and Shift Left Testing
	Slide 28: Test Considerations
	Slide 29: Agile testing Pyramid (Mike Cohn)
	Slide 30: Ask the audience
	Slide 31: Test Data - Clean test data is essential
	Slide 32: Ask the audience

	Deployment
	Slide 33
	Slide 34: Code deployment must be reliable

	DevOps
	Slide 35: Iterative App Modernization requires DevOps
	Slide 36: IBM i+ DevOps
	Slide 37: Benefits of clear CI/CD strategy

	API management
	Slide 38: API Management Features

	Close
	Slide 39: Takeaways
	Slide 40
	Slide 41: Thank you

