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Not designed for today’s business

Source: Deloitte
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Challenging to maintain

Difficult to connect to other systems

User experience limitations



Philosophies of Modernization

In place Hybrid Migrate
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The Case for Modernization 

Decades of business logic invested 

Long lead times

Business disruption

High costs/overruns

Performant platforms

IBM i is mission-critical and migration is risky!
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The Case for Modernization 

• Modernizing IBM i applications enables businesses to better serve customers, 
capture new clients, and enter or even create new markets. 

• Modernization is the preferred path
‒ Over 70% of IBM i customers choose 

modernization over migration (IDC)

• Development agility is crucial
‒ 69% of IT leaders say modernization is “very or 

extremely important” for business objectives over 
the next 12 months (Rocket Software, IT Jungle)

Businesses must evolve to stay competitive
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- ITJungle

Modernizing IBM i applications 
enables businesses to better 
serve customers, capture new 
clients, and enter or even 
create new markets.



Role of APIs & User Experience in Modernization

• API integration is transforming 
operations

‒ APIs streamline how organizations 
expose and consume business logic 
and data across platforms

• User experience matters
‒ Modern, user-friendly interfaces drive 

agility, speed deployment of new 
features, and improve staff retention

Source: Deloitte
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Philosophies of Modernization

In place Hybrid Migrate
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The Strangler Pattern
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Strangler Fig

Strangler fig is the common name 
for a number of tropical and 
subtropical plant species in the 
genus Ficus. 

They seed in the upper branches 
of a tree and gradually work their 
way down the tree until they root 
in the soil. 

Over many years they grow into 
fantastic and beautiful shapes, 
meanwhile strangling and killing 
the tree that was their host.
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Strangler Pattern
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• Examine the business capabilities that the current 
application provides.

• Create small strangler services that encapsulate the 
logic of each capability. 

• Migrate business capabilities into new services.



Identify the business capabilities
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Group logic in independent bubbles…
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Prioritize the bubbles 
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Create small strangler services for the bubbles
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Chip away at the capabilities of the old application
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Effort (cost/time)
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Iterative App 
Modernization

Do small increments, avoid 
major rewrites.

Deliver incremental business 
value.

Breaking a huge application
into smaller chunks requires 
careful preparation and a 
solid testing strategy. 

today

future

= legacy functions

= modern functions



Iterative application 
modernization
A detailed approach
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Setting the foundation for success
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Which 
components 

do you need to 
succeed

API creation

DeploymentDevOps

API management



Collecting application insights
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• How  is the monolith being used? 

• What business  functions?

• Identify usage patterns

• Capture all user types

• Augment with source analysis
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Applying the
Strangler Pattern

• Analyze Application Insights

• Prioritize functions

• Turn function into a REST  API

• Create a test suite for it
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Applying the
Strangler Pattern (2)

• Recreate the same function

• same                                  spec

• Insert router  

• Switch over
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Account 
Setup

Router

= any language or platform
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Applying the
Strangler Pattern (2)

• Recreate the same function

• Same                                  spec

• Insert router  

• Switch over

• Decommission legacy code
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Applying the
Strangler Pattern (2)

• Recreate the same function

• Same                                  spec

• Insert router  

• Switch over

• Decommission legacy code

• Repeat
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Applying the
Strangler Pattern (3)

• Discard unused functions 

• Decommission legacy 
component

• Move on to the next

Router
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Testing stages
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Unit Testing

Does the thing 
I created do what I 

expected it 
to do?

System Testing

Does the thing I 
created do what it 

was designed to do?

Acceptance Testing

Does my end user like 
the thing I created?

How is the 
performance? 

Test new code 
with unit testing 

Integration Testing

Does the thing I 
created work with 
the things others 

created?

End to end 
testing of the mix 

of old and new

Run old and new 
side by side

Make sure old 
and new work 
well together



The 10x rule and Shift Left Testing

Bugs get ~10x more expensive 
to fix at each later stage of the 
software development lifecycle 

Barry Boehm, 1981

Shift Left Testing tests 
earlier in the SDLC

Larry Smith, 2001



Test Considerations

• Shift left testing

• Automate, automate, automate

• Good test data

• Generate test scripts from OpenAPI

• Measure and monitor API performance



Agile testing Pyramid (Mike Cohn)

29

UI

System

API

Integration

Unit

A
u
to

m
a
te

d

Theory

UI

Exploratory

Reality

Exploratory



Ask the audience
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What’s does your 
pyramid look like?

Mike Cohn’s

Cocktail glass



• Test data should be: 
• up to date
• specific to the use case
• anonymized
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Test Data - Clean test data is essential  

• Ensure you meet your 
compliance obligations

• Revert after testing



Ask the audience
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How do you get
 your test data?

We don’t

We generate with AI

We extract from 

      production
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Effort (cost/time)
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Deploying the 
Application

Heterogeneous architecture

Where will the polylith run?

Microservice deployment 
should be carefully 
orchestrated and automated

future

= legacy functions

= modern functions



70% of errors in 
production are 
deployment 
problems – only 
30% are due to 
faulty code (IDC)

Deployment is 
complex in an 
IBM i+ environment

Comprehensive 
control and 
visibility of 
deployments 
is essential

Testcases must 
cover not just 
software but also 
deployment

Code deployment must be reliable
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01 02 03 04

Automation is key



Iterative App Modernization requires DevOps 
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Design Code Test Deploy

Waterfall

CodeDesign Test DeployCode Code CodeTest Test Test

Agile

DevOps

Design



IBM i+ DevOps
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Continuous 
Integration (CI)

Continuous 
Deployment (CD)



Benefits of clear CI/CD strategy

• Faster time to market and feedback from users 
through automation of the test process

• Improve code quality and reliability 
through more thorough testing during development 
by making testing cheaper and easier

• Empowering teams with valuable test result data and reporting 
so they can make informed business decisions
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API Management Features
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API Policy Manager

API Analytics

API Gateway

API portal

Deployment Flexibility



Takeaways

• Strangler Pattern is a good strategy to break up the monolith
Modernize incrementally and avoid the pitfalls of major rewrites

• Test thoroughly and often
Shift left testing, required for CI/CD, will increase software quality & reduce costs

• Implement comprehensive automation technologies
Automation is the key and will reduce time-to-production, errors, & skills reliance

• Ensure you achieve transparency throughout all development activities
Visibility has never been more important with ever increasing complexity

• A good DevOps strategy will help you achieve this
It’s no longer optional
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Swing by Rocketsoftware.com to see how we 
can help you disrupt, without disruption

Booth Number #515 

Q&A
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rocketsoftware.com
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